ОРГАНЫ ЧУВСТВ

-- Орган зрения
-- Орган слуха и равновесия
-- Орган вкуса
-- Орган обоняния
-- Кожа
МЫШЕЧНАЯ СИСТЕМА

-- Строение мышц
-- Классификация мышц
-- Вспомогательный аппарат и работа мышц
-- Мышцы и фасции туловища
-- Мышцы и фасции головы и шеи
-- Мышцы и фасции верхней конечности
-- Мышцы и фасции нижней конечности
 
ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

-- Белковый обмен
-- Углеводный обмен
-- Липидный обмен
-- Водный и минеральный обмен
-- Витамины
-- Образование и расход энергии

  

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

-- Сердце
-- Сосуды малого круга кровообращения
-- Сосуды большого круга кровообращения
-- Ветви дуги аорты
-- Ветви грудной части аорты
-- Ветви брюшной части аорты
-- Вены большого круга кровообращения
-- Система вен сердца
-- Система верхней полой вены
-- Система нижней полой вены
-- Система воротной вены
-- Лимфатическая система
-- Кроветворные органы
-- Физиология сердечно-сосудистой системы
-- Регуляция деятельности сердечно-сосудистой
-- Образование, состав и своийства лимфы

ВНУТРЕННИЕ ОРГАНЫ

-- Пищеварительная система
-- Полость рта
-- Железы рта
-- Глотка
-- Пищевод
-- Желудок
-- Тонкая кишка
-- Толстая кишка
-- Печень. Желчный пузырь
-- Поджелудочная железа
-- Полость живота и брюшина
-- Физиология пищеварения
-- Регуляция пищеварения
-- Дыхательная система
-- Полость носа
-- Гортань
-- Трахея и бронхи
-- Легкие
-- Плевра и средостение
-- Физиология дыхания
-- Мочеполовой аппарат
-- Почка
-- Мочеточники
-- Мочевой пузырь
-- Мочеиспускательный канал
-- Физиология почек
-- Мужские половые органы
-- Женские половые органы
 
КЛЕТКИ И ТКАНИ

-- Клетки
-- Ткани
-- Органы и системы органов
-- Организм как единое целое 

КОСТИ И ИХ СОЕДИНЕНИЯ

-- Строение костей
-- Соединение костей
-- Скелет туловища
-- Скелет головы
-- Скелет конечностей

 

ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ

-- Гипофиз и эпифиз
-- Щитовидная и паращитовидная железы
-- Вилочковая железа
-- Надпочечник
-- Эндокринная часть поджелудочной железы
-- Эндокринная часть половых желез
-- Регуляция желез внутренней секреции

 

НЕРВНАЯ СИСТЕМА

-- Центральная нервная система
-- Спинной мозг
-- Головной мозг
-- Периферическая нервная система
-- Черепные нервы
-- Спинномозговые нервы
-- Вегетативная (автономная) нервная система
-- Симпатическая часть вегетативной нервной системы
-- Парасимпатическая часть вегетативной системы
-- Физиология нервно-мышечной системы
-- Физиология центральной нервной системы
-- Условные и безусловные рефлексы
-- Типы высшей нервной деятельности
-- Сигнальные системы
-- Физиология сна

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Физиология коры полушарий большого мозга. Большой, или конечный, мозг является одним из сложных органов человека. Функции этого отдела ЦНС значительно отличаются от функций ствола и спинного мозга. Они составляют основу физиологии высшей нервной деятельности. Под высшей нервной деятельностью И. П. Павлов подразумевал поведение, деятельность, направленную на приспособляемость организма к изменяющимся условиям внешней среды, на равновесие с окружающей средой. И. П. Павлов своими исследованиями доказал не только рефлекторную деятельность коры мозга, но и открыл качественно новый высший тип рефлексов — условные рефлексы. Далее было выяснено, что условные рефлексы — это элементарные акты, из которых складывается поведение человека и животных. Вместе с тем было установлено, что поражение коры полушарий в эксперименте приводит к безвозвратной утрате приобретенных реакций, выработанных в процессе индивидуальной жизни, — условных рефлексов. Морфологическим подтверждением данных физиологии и клиники явилось учение о разнокачественном строении коры полушарий большого мозга в разных ее участках — цито- и миелоархитектоники коры. В результате детального изучения были созданы специальные карты мозговой коры, отражающие совокупность корковых концов и анализаторов.

Анализатор представляет собой нервный механизм, состоящий из рецепторного воспринимающего аппарата, проводников нервных импульсов и мозгового центра, где происходит анализ всех тех раздражении, которые поступают из окружающей среды и организма человека. Различные анализаторы тесно взаимосвязаны, в связи с этим в коре происходят анализ и синтез, выработка ответственных реакций, которые регулируют все виды деятельности человека. Известно, что в коре головного мозга имеются ядро и рассеянные элементы, занимающие определенную площадь. Кора полушарий большого мозга представляет собой совокупность ядер различных анализаторов, между которыми находятся рассеянные элементы разных смежных анализаторов.

Так, в соответствии с цитоархитектоническими картами полушарий большого мозга у человека можно определить корковые концы различных анализаторов (ядер) относительно извилин и долей полушарий (рис. 141).

Рис. 141. Цитоархитектонические поля коры больших

                полушарий большого мозга (по Бродману, 1925):

А - латеральная поверхность; Б - медиальная поверхность; числа - корковые поля

 

В коре постцентральной извилины и верхней теменной дольке находятся нервные клетки, которые образуют ядро коркового анализатора общей чувствительности (температурной, болевой, чувствительной) и проприоцептивной. Проводящие чувствительные пути, идущие от коры большого мозга, имеют перекрест на уровне спинного и продолговатого мозга. В результате этого постцентральные извилины каждого полушария связаны с противоположной половиной поля. В постцентральной извилине все рецеп-торные поля разных участков тела имеют свою собственную проекцию на область коркового окончания анализатора общей чувствительности. Ядро двигательного анализатора находится в основном в двигательной области коры и локализовано в предцентральной извилине, которая лежит перед центральной (роландовой) бороздой. Известно, что в верхних участках предцентральной извилины и в парацентральной дольке расположено ядро, импульсы от которого идут к мышцам нижних отделов туловища и конечностей.

В нижней части предцентральной извилины находится ядро двигательного анализатора, которое регулирует деятельность мышц лица.

В задних отделах средней лобной извилины находится ядро анализатора, которое обеспечивает функцию сопряженного поворота головы и глаз в противоположную сторону.

В области нижней теменной дольки находится ядро двигательного анализатора, функция, которого заключается в осуществлении всех целенаправленных сложных движений.

В коре верхней теменной дольки расположено ядро кожного анализатора, одного из видов чувствительности, которому свойственна функция познания предмета на ощупь. Корковые концы этого анализатора находятся в правом и левом полушариях. Повреждение этих участков коры приводит к утрате узнавания предметов при ощупывании.

Ядро зрительного анализатора находится на медиальной поверхности затылочной доли. В коре затылочной доли левого полушария проецируются соответственно рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Поражение зрительного анализатора ведет к полной утрате зрения или зрительной памяти с нарушением способности ориентироваться в незнакомом пространстве.

Ядро слухового анализатора локализовано в верхнем крае височной доли. К нему идут проводящие пути от рецепторов как левой, так и правой стороны. При этом одностороннее поражение ядра не вызывает полной утраты способности воспринимать звуки. При двустороннем поражении наблюдается «корковая глухота». На нижней поверхности височной доли полушарий большого мозга, в области крючка (конец парагиппокампальной извилины) находится ядро анализатора запаха.

Чувства обоняния и вкуса тесно взаимосвязаны, что объясняется близким расположением их анализаторов. Ядра анализаторов полушарий связаны с рецепторами как левой, так и правой стороны тела.

В заднем отделе средней лобной извилины находится ядро двигательного анализатора письма. Повреждение этой зоны ведет к утрате точных движений при написании букв и цифр.

Ядро двигательного анализатора артикуляции речи находится в задних отделах нижней лобной извилины (центр Брока). Поражение этой зоны ведет к утрате двигательной способности мышц, которые участвуют в речеобразовании. В нижней лобной извилине расположено ядро языкового анализатора, который связан с пением; его повреждение вызывает утрату запоминания музыкальных фраз. В верхней части височной извилины лежит ядро коркового анализатора, поражение которого приводит к музыкальной глухоте.

Проекционные зоны коры занимают небольшой участок поверхности коры больших полушарий мозга человека в сравнении с ассоциативными зонами, которые не имеют тесной связи ни с органами чувств, ни с мышцами, они осуществляют связь между различными областями коры; интегрируют, объединяют все поступающие в кору импульсы в целостные акты обучения (чтение, язык, письмо), логическое мышление, память и обеспечивают возможность целенаправленной реакции поведения.

При нарушениях ассоциативных зон появляются агнозия — неспособность познания и апраксия — неспособность выполнять заученные движения. Например, при повреждении наружной поверхности затылочной доли — ассоциативной зоны зрения — наблюдается зрительная агнозия, больной не способен прочитать текст, узнать знакомого человека. В случае нарушения ассоциативных зон речи коры головного мозга возможна афазия — утрата речи. Афазия может быть сенсорной и моторной.

Сенсорная афазия (афазия Вернике) характеризуется нарушением понимания устной речи при сохранении возможности повторения сказанного другим лицом; наблюдается при поражении проводящих путей между задней и средней частью верхней височной извилины (зона Вернике) и другими областями коры головного мозга. Моторная афазия возникает при поражении задней третей части нижней лобной извилины слева (центра Брока): больной понимает речь говорящего, но сам говорить не может.

Электрические явления в коре головного мозга. У человека и других позвоночных с помощью специальных приборов можно зарегистрировать спонтанные электрические колебания, для которых характерна соответствующая периодичность. Эти постоянные колебания отражают элементарную активность коры и обозначаются термином электроэнцефалограмма — ЭЭГ (рис. 142).

Для проведения ЭЭГ обычно используются два метода: биполярный и монополярный. При биполярном отведении оба отводящих электрода расположены на коже головы, являются активными и регистрируют разность потенциалов между двумя точками коры. При монополярном отведении один электрод фиксируется на поверхности головы (активный), а другой — на мочке уха (индифферентный). Расположение электродов при регистрации ЭЭГ стандартизировано и включает обязательные отведения от лобных долей, двигательной коры, теменных и затылочных долей.

Рис. 142. Электроэнцефалография.

А — схема регистрации ЭЭГ; Б — основные ритмы ЭЭГ; Э1 активный электрод; Э2 индифферентные электроды

 

При анализе ЭЭГ учитывают частоту, амплитуду, форму и продолжительность ее электрических колебаний. У взрослого человека в состоянии покоя и при отсутствии внешних раздражителей на ЭЭГ наблюдаются регулярные волны, идущие с частотой 8—13 Гц и имеющие амплитуду около 50 мкВ. Эти волны обозначаются как альфа-ритм, наиболее выражены в затылочных долях коры. Переход человека от состояния покоя к деятельности (умственная работа, восприятие света и др.) сопровождается исчезновением альфа-ритма и появлением частых (14—30 Гц) низкоамплитудных (25 мкВ) колебаний бета-ритма. Если человек в состоянии покоя переходит не к активной деятельности, а ко сну, то в его ЭЭГ появляются более медленные и высокоамплитудные по сравнению с альфа-ритмом волны, в частности тэта-ритм (4—7 Гц) — 100—150 мкВ и дельта-ритм (0,5— 3,5 Гц) - 250-300 мкВ.

В норме у не спящего человека тэта- и альфа-ритмы не выявляются. Прекращение кровоснабжения мозга уже через 15с приводит к исчезновению его электрической активности.

Таким образом, ЭЭГ и анализ ее частотного спектра позволяют судить о функциональном состоянии коры головного мозга и широко используют в клинической практике.

Копирайт: bodyinfo.ru © Федюкович Н.И. | проект Павлова Александра Главная | Контакты ]